This post reviews NumPy main components and functionality, with attention to the needs of Data Science and Machine Learning practitioners, and people who aspire to become a data professional.
Data Science
Since its emergence in Asia late 2019, the coronavirus COVID-19 pandemic has been devastating. The virus spread to most countries causing severe respiratory infections and many human casualties. The virus also put half of the world population in lockdown which resulted in a slowdown of the world economy and a fall in stock prices.
The goal of this tutorial is to introduce the steps for collecting and analyzing stock data in the context of the coronavirus pandemic. To do this, we will use Python, Google Sheets and Google Finance.
Loominus has opened up registration and is offering free accounts for a limited time. There’s a whole slew of new features including private data repos, data pipeline cloning, automated data pipelines, enhanced column type detection, UI/UX improvements, detailed information for active tasks, model stream updates and updated API documentation.
Loominus is an end-to-end platform that helps teams ingest and stage data, build advanced machine learning models with no code and deploy them into production. Loominus makes it easy for individuals and teams without experience building machine learning pipelines to take advantage of machine learning faster. Loominus is equally great for experienced data scientists that need to focus on model selection and tuning.
Tips for Selecting Columns in a DataFrame pbpython.com
This article will discuss several tips and shortcuts for using iloc
to work with a data set that has a large number of columns. Even if you have some experience with using iloc
you should learn a couple of helpful tricks to speed up your own analysis and avoid typing lots of column names in your code.
Cleaning Up Currency Data with Pandas pbpython.com
This article summarizes how to clean up messy currency fields and convert them into a numeric value for further analysis. The concepts illustrated here can also apply to other types of pandas data cleanup tasks.
In this tutorial, we’re going to dig into how to transform data using Python scripts and the command line.
But first, it’s worth asking the question you may be thinking: “How does Python fit into the command line and why would I ever want to interact with Python using the command line when I know I can do all my data science work using IPython notebooks or Jupyter lab?”
Notebooks are great for quick data visualization and exploration, but Python scripts are the way to put anything we learn into production. Let’s say you want to make a website to help people make Hacker News posts with ideal headlines and submission times. To do this, you’ll need scripts.
Keras Learning Rate Finder pyimagesearch.com
In this tutorial, you will learn how to automatically find learning rates using Keras. This guide provides a Keras implementation of fast.ai’s popular “lr_find” method.
Portable Computer Vision: TensorFlow 2.0 on a Raspberry Pi towardsdatascience.com
For roughly $100 USD, you can add deep learning to an embedded system or your next internet-of-things project.
Are you just getting started with machine/deep learning, TensorFlow, or Raspberry Pi? Perfect, this blog series is for you!
But like in most cities, finding a parking space here is always frustrating. Spots get snapped up quickly and even if you have a dedicated parking space for yourself, it’s hard for friends to drop by since they can’t find a place to park.
My solution was to point a camera out the window and use deep learning to have my computer text me when a new parking spot opens up.
Awesome Data Science with Python github.com
A curated list of awesome resources for practicing data science using Python, including not only libraries, but also links to tutorials, code snippets, blog posts and talks. So. Much. Python.
PyTorch Sentiment Analysis github.com
Tutorials covering how to do sentiment analysis using PyTorch 1.0 and TorchText 0.3 using Python 3.7.
The first 2 tutorials will cover getting started with the de facto approach to sentiment analysis: recurrent neural networks (RNNs). The third notebook covers the FastText model and the final covers a convolutional neural network (CNN) model.