Training is without a doubt the most important part of developing a machine learning application. It’s when you start realizing whether or not your model is worth it, how your hyperparameters should look like and what do you need to change in your architecture. In general, most machine learning engineers spend quite some time on training, experimenting with different models, tuning their architecture and discovering the best metrics and losses for their problem.
Deep Learning
Machine Learning & Deep Learning Fundamentals https://deeplizard.com/learn/playlist/PLZbbT5o_s2xq7LwI2y8_QtvuXZedL6tQU
This series explains concepts that are fundamental to deep learning and artificial neural networks for beginners. In addition to covering these concepts, we also show how to implement some of the concepts in code using Keras, a neural network API written in Python. We will learn about layers in an artificial neural network, activation functions, backpropagation, convolutional neural networks (CNNs), data augmentation, transfer learning and much more!
If you have a relative working in the banking industry, ask the person what annoys him/her most about the job. You will surely receive an answer that is related to the task of data entry i.e. the practice of manually entering serial numbers and names from financial documents into the bank’s database.
Logo Recognition Using Machine Learning and Flask API https://heartbeat.fritz.ai/logo-recognition-ios-application-using-machine-learning-and-flask-api-aec4eff3be11
Comparing 5 popular neural net architectures on iOS: VGG16, ResNet50, InceptionV3, GoogleNet, and SqueezeNet using PyTorch.
How to train a neural net to play cards apptic.me
In this article, we’ll use some basic machine learning methods to train a bot to play cards against me. The card game that I’m interested in is called Literature, a game similar to Go Fish.
The version of Literature that we implemented is roughly similar to the rules I linked above. Literature is played in two teams, and the teams compete to collect “sets.” A set is a collection of either A – 6 of a suit or 8 – K of a suit (7’s are not included in the game).
Image Classification with Transfer Learning and PyTorch stackabuse.com
Transfer learning is a powerful technique for training deep neural networks that allows one to take knowledge learned about one deep learning problem and apply it to a different, yet similar learning problem.
Using transfer learning can dramatically speed up the rate of deployment for an app you are designing, making both the training and implementation of your deep neural network simpler and easier.
CNNs, Part 2: Training a Convolutional Neural Network victorzhou.com
In this post, we’re going to do a deep-dive on something most introductions to Convolutional Neural Networks (CNNs) lack: how to train a CNN, including deriving gradients, implementing backprop from scratch (using only numpy), and ultimately building a full training pipeline!