Since the invention of the automobile, manufacturers have steadily added more safety features and improved car design over time with the goal of keeping drivers safer on the road. Automotive manufacturers have spent millions of dollars researching safety improvements for seatbelts, tires, and pretty much every car piece or part imaginable. Despite all of this investment, driving remains substantially more fatal than alternatives such as air travel in 2019. According to the National Safety Council, approximately 40,000 people died in automotive accidents in the United States alone in 2018. In fact, there were a total of ~500 deaths resulting from plane crashes recorded globally in 2018 — that’s 80 times fewer deaths when compared to car crash fatalities in the US only.
Convolutional NN
Reverse Image Search with Machine Learning commercetools.com
The Machine Learning team at commercetools is excited to release the beta version of our new Image Search API.
Image search (sometimes called reverse image search) is a tool, where given an image as a query, a duplicate or similar image is returned as a response. The technology driving this search engine is called computer vision, and advancements in this field are giving way to some compelling product features.
Keras Mask R-CNN pyimagesearch.com
In this tutorial, you will learn how to use Keras and Mask R-CNN to perform instance segmentation (both with and without a GPU).
Using Mask R-CNN we can perform both: Object detection, giving us the (x, y)-bounding box coordinates of for each object in an image; Instance segmentation, enabling us to obtain a pixel-wise mask for each individual object in an image.
CNNs, Part 2: Training a Convolutional Neural Network victorzhou.com
In this post, we’re going to do a deep-dive on something most introductions to Convolutional Neural Networks (CNNs) lack: how to train a CNN, including deriving gradients, implementing backprop from scratch (using only numpy), and ultimately building a full training pipeline!
An Introduction to Convolutional Neural Networks victorzhou.com
There’s been a lot of buzz about Convolution Neural Networks (CNNs) in the past few years, especially because of how they’ve revolutionized the field of Computer Vision. In this post, we’ll build on a basic background knowledge of neural networks and explore what CNNs are, understand how they work, and build a real one from scratch (using only numpy) in Python.